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Abstract. A new modified induced module construction is presented for all finite- 
dimensional irreducible typical and atypical modules of a type-I basic classical Lie super- 
algebra. The method is illustrated with some low-dimensional representations of g l (m 1 n )  
and all representations of gl( 2 1 1) .  

1. Introduction 

The theory of Lie superalgebras and their representations plays a fundamental role in 
the understanding and exploitation of supersymmetry in physical systems. The concept 
of supersymmetry first arose in elementary particle physics (Wess and Zumino 1974) 
and has since been discussed in a variety of other areas including nuclear physics 
(Iachello 1980) and condensed matter physics (Parisi and Sourlas 1979, Nambu 1985). 
A comprehensive review of Lie superalgebra representation theory and its various 
physical applications is provided in Kostelecky and Campbell (1985). 

Much of the necessary formal mathematical machinery for investigating basic 
classical Lie superalgebras and their finite-dimensional representations has now been 
developed, primarily by Kac (1977, 1978) who has introduced the now familiar 
categorisation of the irreducible representations into typical and atypical types. Typical 
representations have many properties in common with irreducible representations of 
simple Lie algebras. In particular, they are uniquely characterised by their infinitesimal 
characters and may be explicitly constructed by an induced module construction (Kac 
1978) which leads directly to a simple determination of their dimensions and characters 
(Kac 1978). By contrast, the situation with atypical representations is far more complex. 
Various techniques have recently been introduced to gain greater insight into the 
structure of finite-dimensional irreducible atypical modules. We mention in particular 
the supertableaux methods (Balantekin and Bars 1981, 1982, King 1983, Hurni 1987, 
Dondi and Jarvis 1981, Farmer and Jarvis 1984) and those based on shift operators 
and weight space techniques (Hughes 1981, Van der Jeugt 1984,1987, Hurni and Morel 
1982,1983). For a recent discussion on the calculation of characters of atypical modules 
see also Hughes and King (1987). 

Despite this recent progress in the understanding of atypical representations, they 
are still far from well understood. One of the main difficulties is that a canonical 
construction for the irreducible atypical modules, analogous to Kac’s construction for 
the typical modules, has not previously been developed. I t  is our aim in this paper to 
introduce a new direct method for the explicit construction of all atypical modules for 
a type-I basic classical Lie superalgebra. The method is based on a modification of 
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1210 M D Gould 

the induced module construction of Kac (1978), in which our modules essentially 
appear as the unique irreducible submodules of lowest-weight Kac modules. The 
proposed construction contains a great deal of information on the structure of atypical 
modules and, in particular, may be applied to determine the A(  m I n ) J A (  m 1 n - 1)  (and 
hence g1( m 1 n)Jgl( m I n - 1)) branching rules (and thus characters) for atypical irreduc- 
ible representations, as will be demonstrated for the case gl( n 1 I )  in a forthcoming 
publication. It would be of interest to extend the construction of this paper to type-I1 
basic classical Lie superalgebras. 

2. Construction of irreducible modules 

Let L =  L,@L, be a basic classical Lie superalgebra and let H be a fixed Cartan 
subalgebra (CSA) of the even part Lo, herein referred to as the CSA of L. We let 
@ = @nu denote the set of roots of L relative to H with 0 0  (QI)  the set of even 
(odd) roots. For CY E @ we let L, = L denote the corresponding root space of L and  
we denote by WO the Weyl group of Lo, herein referred to as the Weyl group of L. 

Let Bo be the Borel subalgebra of Lo generated by the CSA H and positive root 
spaces L, c L,(a > 0) and  let 

B=BoOBI (1) 

L = N - O H O N ,  B = H O N +  (2) 

be a fixed Borel subalgebra of L. We obtain the following decomposition of L: 

where N' are nilpotent subalgebras of L and [H, N'] E N'. A root a E @ is called 
positive (negative) if L , c  N+  (N-) .  We denote the set of positive roots of L by @' 
and we let @: (a:) denote the subset of even (odd) positive roots: we have @ + =  
0; U @:, @ = @ + U  @-, 0- = -@+. Finally we let Po ( p , )  denote the half-sum of the 
even (odd) positive roots and we set 

P = PO-PI  

herein referred to as the graded half-sum of positive roots. Throughout we follow Kac 
(1978) and assume that the Borel subalgebra (1) is 'distinguished'. 

We are concerned in this paper with simple basic classical Lie superalgebras of 
type I: that is, we assume L is one of the Lie superalgebras A( m, n )  or C( n )  (all other 
basic classical Lie superalgebras are said to be of type 11). In such a case the Lie 
algebra Lo is reductive and  we have a decomposition 

Lo=[Lo, Lo]OC 

where [Lo, Lo] is a semisimple Lie algebra and  C is the one-dimensional centre of Lo 
(except for A(n, n )  when C = (0)). The Lie superalgebra L also admits a natural 
Z-gradation (Kac 1978) 

L = L - O L o O L ,  L, = L-OL, (3 )  
where L, (L-) is the subspace of L, spanned by the root spaces L, corresponding to 
odd roots CY E @T (0;). We note that the spaces L, constitute Abelian subalgebras of 
L: 

[ L,, L,] = [ L- , L-1 = (0). 
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In the notation of ( l ) ,  we have B, = L, which constitutes the odd part of the distin- 
guished Borel subalgebra B. In  an analogous way the subalgebra N = N - O H  (cf ( 2 ) )  
also constitutes a Borel subalgebra of L whose corresponding odd part is given by L-. 

For each root a E @, we choose a non-zero element x, of the root space L, : we 
note that x, spans L,. Following Kac (1978) we set 

T+= fl X n  T-= fl x-, (enveloping algebra product). (4) 
n e 4 7  a s @ ;  

We note that, since L, are Abelian algebras, the products in (4) are uniquely defined 
u p  to multiplication by *l. We note also that T+ transforms, under AdLo, as one- 
dimensional representation of L,, , and in particular must commute with the elements 
of the semisimple part [L,, Lo] of Lo. The operator T- transforms, under AdLo, 
contragrediently to T+ which implies that the operators T+T-, T-T+ must commute 
with the elements of Lo. 

Throughout we let U ( Uo, U,) denote the universal enveloping algebra of L (Lo, Lr).  
In view of (3 )  and the PBW theorem (Kac 1978) we have the following decomposition 
of U :  

U = u - u o u , .  

We note that the operators T, of (4) belong to U, respectively. Let us write 

@ : = { a , ,  . . . )  a k }  k = f dim L, . 
Then the algebra U+ is 2 k  dimensional and is spanned by 1 E C together with the basis 
monomials 

X n r , X a , 2  . . . X a ,  1 c i , < i 2 < .  , .< irs k, l s r s  k. 
In a similar way U- is spanned by 1 E C together with the basis monomials 

x -,,, x -,,, * .  . x- 1 c i ,  < i 2 < .  , . < i, s k, 1 s r c  k. 
In the following we also find it convenient to introduce the subalgebras 

c, = Lo@ L, L = L - o i , = L - o L + .  

We denote the universal enveloping algebras of LT by 
As in the Lie algebra case, the finite-dimensional irreducible L-modules are uniquely 

characterised by their highest weights: we denote the irreducible L-module with highest 
weight A by V ( A ) ,  where .I is necessarily a dominant integral weight (Humphreys 
1972) of Lo. We denote the set of dominant integral weights of Lo (and hence L) by 
D+. Corresponding to any A E D' we may construct a finite-dimensional indecompos- 
able L-module with highest weight -4, using the induced module construction of Kac 
(1978), as follows: let Vo(.4) denote the finite-dimensional irreducible L,-module with 
highest weight A.  We turn Vo(A) into a o,-module by defining 

respectively. 

L, VJA) = (0). ( 5 )  
The induced L-module V(A)  is then given by (Kac  1978) 

V(A)=U-Ofi,V,(,I)= @ x -,,,... X- Q ' ,  @Vo(, I )  ( 6 )  

which constitutes an  indecomposable L-module with highest weight A and dimension 
dim V(A)  = 2 k  dim Vo(A). 

/ S i , c , ? (  c r , s h  

In a similar way we may define 

L- V,( .I) = ( 0 )  ( 7 )  
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which leads to the induced module 

q - ) ( A ) =  U+@ 0- Vo(i1) (8) 

which is also indecomposable but in this case is cyclically generated by a lowest-weight 
vector of weight 11- where '1- is t he  lowest weight of V,(A): recall (Humphreys 1972) 
that -11- is the highest weight of the dual module V,*(A) and A- is WO-conjugate to 
A. 

If the induced module ( 6 )  is irreducible we necessarily have v ( A )  = V ( , i )  in which 
case A is said to be typical. The structure of typical modules thus follows immediately 
from the induced module construction (6) which affords a great deal of information, 
and  in particular enables a straightforward derivation of the dimensions and  characters 
of typical L-modules (Kac  1978). However, in the case of atypical A E  D', the Kac 
module (6) is no longer irreducible and  it is necessary to factor out by the (unique) 
maximal submodule of v(n), herein denoted by M(A): 

V ( A ) =  v(A)/M(A).  

In such a case the structure of V(A)  is difficult to determine from the induced module, 
since it is first necessary to construct the maximal submodule M(A). 

It is our aim here to develop an alternative direct construction of all finite- 
dimensional irreducible L-modules V (  A) ,  using a modified induced module construc- 
tion, which does not require a knowledge of the maximal submodule M ( h ) .  
Throughout, unless otherwise stated, V,(A) denotes a finite-dimensional irreducible 
Lo-module with highest weight A satisfying ( 5 ) .  

We note first that we may write 

T+T- = A + @  @ E U L +  (9) 

A = [ x u ,  1 [XC+], . * * [x,, 9 T-I. . .]I. (10) 

where 

We note that A necessarily belongs to the enveloping algebra U, of Lo and moreover 
must commute with the elements of Lo. Thus A belongs to the centre 2, of U,. It 
follows that T+T- must reduce to a scalar multiple of the identity, on the subspace 
V , ( A ) r  V(A) ,  given by 

T+T-w = x , ( A ) w  w E VdA)  ( 1 1 )  
where x,(A) denotes the eigenvalue of A E  2, on Vo(A). In view of Harish-Chandra's 
theorem A determines a polynomial function fA on H *  defined by 

f A ( N  = x , (A)  

which is necessarily fixed by all elements of the translated Weyl group 
1972), viz 

(Humphreys 

f ~ ( w ( A + ~ o ) - ~ o )  = f i ( A )  V W E W ,  

We note also that fA is to determine a polynomial of degree 

k = / @ ; / .  

Following the argument of Kac (19781, let a ,  denote the distinguished simple odd 
root of @+, so that 

[ x u ,  X-,J = 0 C Y € @ , '  (12) 



Type-I Lie superalgebras 1213 

and let U: be the maximal weight vector of Vo(A). It follows immediately from (12) 
that if (A ,  a,) = 0 then 

U0 = x-,rv: (13) 

satisfies 

B v ~  = 0 

and thus is a maximal weight state of L. In such a case the vector (13) cyclically 
generates an  indecomposable L-module of highest weight A - as .  On the other hand 
we note that 

T-u:E  Ux-,,u: = n - v o  

(since T- contains a factor x-,~) from which we obtain 

T+T_U:E CU,. 
Equation (1 1) then implies that, when (A ,  a,) = 0, 

T+T-v$ E a-u0n Vo(A) = (0) 

from which we deduce that the polynomial function jA is divisible by a factor 

(4 as) = (A+P, a s )  

where we have used the fact that ( p ,  a,) = 0. Using the %,-invariance of f A  we then 
deduce divisibility of fb by factors 

( A +  P, a )  a €@; 

which follows from the WO-invariance of 0; (i.e. WO permutes the roots of 0;). The 
number of such factors equals precisely the degree k of fA from which we obtain 

for some non-zero scalar c E C, in agreement with the result of Kac. 

technical lemma. 
Before proceeding to Kac’s main result on typical modules we need the following 

Lemma 1. 
(i) Every L-submodule of v(A) contains the Lo-module T - O  Vo(h) .  
(ii) Every L-submodule of q - , ( A )  contains the Lo-module T + O  Vo(A), 

Prooj Let 

be an  arbitrary element of v ( A ) .  Then choose index r minimal with respect to the 
property q i .  ,, # 0 for some choice of r indices 1 s i ,  < . . . < i, S k. It is convenient to 
renumber the odd positive roots according to 

at1, a,>, . . . 9 f f l , ?  aI,+i, . . * 9 a l k ’  

Then, by our construction, we have 

xi, . . . x-,, w =x-,,,,+i.. . x-,,kx-*,, . . . x - , , , @ U , l i 2  . ( , I ,  
‘,*I 

= * T - O v , ,  ...,,. 
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It follows that the L-module generated by w must contain a non-zero vector T..O U ,  U E 

Vo(.k), and thus the entire L,-module T-@ VJ.l) .  Since w E v(Al \ was chosen 
arbitrarily, part ( i )  immediately follows. In a similar way we may prove part (ii). 

We thus arrive at the following result due to Kac (1978). 

Theorem 1 ( K a c ) .  The induced module p(>1), .\E D', is irreducible if and only if 
( h + p ,  a ) f 0 ,  V a  E@;. 

ProoJ Following Kac, since every submodule of p( .I) contains the subspace T_ O V,( .I) 
it follows that P(.l) is irreducible if and only i f  Ti( T _ O  Vcl(.l)) # (0). On the other 
hand we have, for V E  V0(,.2), 

T , T - @ v = , y , ( A ) u = c  n ( . 2 + p ,  a ) u  
ace; 

from which the result follows. 

We remark that the above theorem obviously extends to the minimal-weight induced 
modules q-,(A) of (8). It follows that an  irreducible module V(.l) is typical if and 
only if ('1 + p, a )  # 0, V a  E OT, which is the main criterion of typicality due to Kac 
(1978). In such a case, as mentioned previously, the structure of typical modules 
follows from the induced module construction of (6). 

More importantly, from our point of view, is the result of lemma 1 which enables 
one to construct all irreducible atypical modules. This follows from the fact that, if 
Vo(A) satisfies (5), then lemma 1 implies that the L-module generated by T _ @  Vo(A) 
is necessarily irreducible (with lowest weight -1- - 2 p , ) .  Similarly, if Vo('l) satisfies 
(7) then T+O V,(-l) generates an irreducible L-module with highest weight '1 + 2 p ,  . 

To construct an  irreducible L-module with highest weight . \ E  D' we note, since 
( p , ,  a )  = 0 for a E O:, that A - 2 p ,  E D'. Thus we introduce the finite-dimensional 
irreducible Lo-module V o ( j 2 - 2 p , )  which we convert to a U- module via 

L- V,( .l - 2 p ,  ) = ( 0 ) .  

We then consider the (lowest-weight) induced module 

V - ) ( A - 2 p , )  = u,a,O v(,(.1-2p,) 

and set 

V(.1) = UT+@ V,,(.I - 2 p , ) .  

In  view of the above remarks we have theorem 2. 

Theorem 2. For -2 E D', the module V( , l )  is irreducible with highest weight -1. 

The module construction of (15) implicitly contains all information on the structure 
of irreducible L-modules. In particular it enables, in principle, a systematic determina- 
tion of the structure of all irreducible atypical L-modules for a type-I basic classical 
Lie superalgebra. 
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3. Specific examples 

With the induced module construction of (151, the L-module V(A)  appears as the 
unique irreducible submodule of the induced module q-,(A - 2 ~ ~ ) .  In this section we 
illustrate the utility of this construction with the examples of the identity and vector 
representations of g1( m 1 n )  and all irreducible representations of gl(2 11). (We note 
that our previous results obtained for A(m, n )  extend to gl(m 1 n )  with trivial 
modifications.) 

Throughout we adopt the convenient index notation 

G = m + p  1 S p S n .  

With this convention the generators Eah (1  s a,  b s n + m) of L = gl( m 1 n )  are given by 
the Lo = gl( m)@gl(n)  generators: 

E,, ( 1 d i, j d m ) E p J 1 s p ,  vsn) 
together with the odd generators E,, , E,, (spanning the odd space L , )  which transform, 
under commutation with the gl( m)@gl( n )  generators, as the representations (1 ,O)O 
(0, - l ) ,  ( 0 ,  - l ) @ ( l ,  O ) ,  respectively. The Lie superalgebra structure is then completed 
by the graded commutation relations 

[E,,,  4 1  = S,"E,] + S,,EL, 

[E , ,  9 E,"] = [Ep2 3 EYJ1 = 0. 

Throughout we denote the highest weights of irreducible g1( m 1 n )  modules by A = ( A  I p )  
where A, p denote highest weights of irreducible gl( m)  and g1( n )  modules, respectively. 

For the case at hand the operator T, of (4) may be written 

T+= EiiE21. . . EmiE12.. . E m > .  . . E,, 
and transforms as the one-dimensional irreducible representation of gl( m )@gl( n )  with 
highest weight 2 p , ,  viz 

We also find it convenient to introduce the operators q; defined by 

E,,,'Tr t = 6 t 6,, T,  (17) 
which transform as the irreducible representation of gl(m)@gl( n )  with highest weight 

= ( 0 ,  -1 1 I ,  0 )  + 2p, ,  i.e. 

[ E , , , q f ] =  - 6 , k q r + n S , , q f  

[E,, , qT3 = 6 ,.\Try - ma,, 9 T. (18) 

We similarly introduce the tensors 
q y  = -qry 
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In a similar way higher-order tensors may be introduced, although this will not be 
necessary for the present treatment. 

It is easily verified, in view of (16-19), that the following graded commutation 
relations hold (see the appendix): 

[ E,, , T+ I = 9; ( E - m ),, + 9 :( E + n ) 
(20) 

[E, ,  , q;] = *:;(E - m)kr + q ;( E + n),7 + 9 
(summation over repeated indices assumed) where ( E  - m)l l  is shorthand notation for 
E , , - n 1 8 ~ ,  etc. The tensors defined by (17) and (19) and the relations of (20) play a 
fundamental role in the construction of irreducible g1( m I n )  modules via equation (15). 
We conclude this section with some illustrative examples. 

Identity representation. Let e ,  be the basis vector of the one-dimensional representation 
of gl(m)@gl(n) with highest weight 

-2p, = (-ri 1 ril)  

and, following the induced module construction of (19 ,  define 

EwreO = 0. 

We thus consider the irreducible g1( m I n) module generated by the highest-weight vector 

Ro=  T + O e ,  (21) 

of trivial weight (01 0). To determine the action of the gl( m 1 n )  generators on the state 
(21) we have, in accordance with (16), 

E , R ,  = E,,Ro = E,,Ro = 0 .  

For the remaining generators EPz we may employ (20), according to which we obtain 

E,,RO = [E,!  7 T+kO 
=\ZI;O(E - m ) , , e , + @ Y O ( E + n ) , . e ,  

= -(m + n ) 9 r f O e o +  ( m  + n ) 9 P O e 0 =  0 

where we have applied the results 

Eyeo = -n6,]e0 Eclve0 = m6,,e0. 
The state (21) therefore gives rise to the trivial one-dimensional representation of 
gl(m 1 n) as required. This module is the unique irreducible gl(m I n) module occuring 
in the lowest-weight Kac-module 

U, 0 , -_e , .  

Vector representation. Let P' ( i  = 1, . . . , m )  constitute the basis vectors of the irreducible 
representation of g l (m)Ogl(n)  with highest-weight 6 = (1,010) -2p,, viz 

E,]Pk = 6:C' - n8,Ck 

EllYCk = m8,,Ck. 

Following the induced module construction of (19 ,  we introduce the vectors 

flk = T+OCk E,,Ck = 0 

which generate an  irreducible gl( m I n )  module with highest weight (101 0). 
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We have, in accordance with (20), (221, 

E,,Rk = [ E , ,  , T+]P': 

= q r @ ( ~  - m ) , , F k + q y @ ( E + n ) + v 2  

= s:nw 

a+ = q y @ p ' .  

E,Rk = s;R' 

where 0'' ( p  = 1, .  . . . , n )  is defined by 

It is easily seen that the gl(m)Ogl(n)  generators act on the states Rk,  Rw according to 

E,"R' = 0 

E,$' = S;R' El,Rp = 0. 

Also, in view of (17), we have 

E,,R" = s;ni 

&,a+ = [ E , ,  q y ] P '  
and, finally, from (20) we obtain 

= q:, 0 ( E  - m),,e' + q: @ ( E  + n )  y , ~ '  + QzvO P' 

= (q: + q;") 0 P '  = 0 

where we have applied (22). 
It follows that the states R', n+ span the irreducible ( n  + m)-dimensional gl( m I n )  

module corresponding to the vector representation as required. In this induced module 
approach, the above irreducible g1( m I n )  module appears as the unique irreducible 
submodule of tne induced module 

u+oo VdS) .  

Irreducible representations ofg l (2 /1) .  In the case of gl(21 l ) ,  we denote our g1(2)Ogl(l) 
generators by E: (1 2 ) ,  R respectively, and denote the corresponding odd 
generators by VI, V, ( i  = 1,2), which satisfy the graded commutation relations 

i, j 

[ E ; ,  VL] = SJkV' 

[R, V k ]  = -qk 

[ E ; ,  Vk] = -s;q, 
[a, Ykl= Yk 

[U/', V,] = 8;R + E ; .  

In this case we have two odd positive roots: 

CYl = ( l ,  01-1) 

2p, = (a1 + az) = (1, 1 1-2) 

a2 = (0, 1 1-1) 

so that 

and 
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The tensors of (17) and (19) in the case of gl(2 I 1)  may be simply expressed (omitting 
the superfluous superscripts p, v, etc) 

T,  = Tip2 qj i -  - * 2  q2 = -*I 

q2, = = 1 9il=92,=o 
and the graded commutation relations of (20) reduce to 

Following the construction of (15), to construct the irreducible gl(2 I 1) module with 
highest weight A =  ( A l ,  A21w)  we introduce the g1(2)0gl ( l )  module Vn(,l-2pl) and  
define 

L- Vn( A - 2 p I ) = 0. 

The states 

U =  T+OU U E  Vn(iZ-2pl) 

then generate the unique irreducible gl(2 I 1) submodule of the induced module 

U+ 0 c V,( A - 2~ I 1 
with highest weight A. 

We have, in view of (23), 

* , E  = 9,0( E + n - l ) { U  (24) 

where z5 belongs to the irreducible representation of g1(2)0gl( 1) with highest weight 
‘4. Hence the state 9,ij transforms as a state in the tensor product module 

V~(O, - l I l )@Vo(A)=  Vo(..i-(~l)O Vo(A-(U?), 

To obtain the correct g1 (2 )0g l ( l )  symmetry adapted states, we employ the shift 
component formalism of Green (1971), according to which the operators ‘PI may be 
resolved into shift components according to 

*, =*[11, +*[21, W r l ,  = *,P[rl: 

where 

E - E i  
pc21 = (-) e ,  - e ,  

and e l ,  e2 are gl(2)-invariants which take constant values 

e i = A I + l  = A 2  

on an irreducible gl(2) module with highest weight A = ( A , ,  A ? ) .  In view of the gl(2) 
characteristic identity (Green 1971) we have 

E:P[r]’, = e,P[r];. 

Hence we have 

*[ r],6 = T,P[ r]:ij E Vo(.Z - (U,) r = 1 , 2  
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for C E  Vo(.2). For each r = 1,2 ,  the above states either span the irreducible g1(2)0gl ( l )  
module with highest weight '1 - a ,  or else are zero for all i and  E E V,(A). Now, in 
view of (24), we have 

V [ r ] , E = V , T + @ P [ r ] . i o  

= q k  0 ( E  + R - 1 ))P[ T ] ; I U  

= ( A +  p, a r ) q k  o P[ r ] : v  

where we have employed the gl(2) characteristic identity together with the easily 
established relations 

( E ,  + n - l ) U  = (-1 + p, a,)u for U E V,(A -2p,). 

Hence it follows that the irreducible g1(2)0gl ( l )  module V,(A-cy,) occurs in V(A)  
if and only if A -  a ,  is dominant and (11+p, a,) # 0 ( r  = 1,2) .  

Finally we have the states 

'PI '?J  = V2[Vl, T + ] @  U 

= V2Qk O( E + R  - 1,:v 

= Q , k  0 ( E  + R);( E + n - 1) 7 U 
= 1 OAAU 

where AA is the g1 (2 )0g l ( l )  invariant 

A h =  ( E  + O ) : ( E  +n - 1) - E1E: 

and we have applied the result: q,, = 1, q,, = --q,,. Using the easily established result 

A ~ U  = ( A  + p, (Y 1) (-4 + p, a>)  U U E V o ( A - 2 ~ 1 )  

we thus obtain (cf ( 9 ) ,  (11) and (14)) 

q~r,Y 1 T ,  @ 2, = (.I + p I , (Y 1 )(>A + p 1 , a 2 )  ( 1 8 U )  E vo( h - 2p 1 ) . 

Hence the representation V,(A - 2 p , )  only occurs in V ( h )  if ( A + p ,  a,) # 0 for r = 1,2 ,  
i.e. if V(.2) is typical. 

Thus, if V(,2) is typical we have a g1(2)0gl ( l )  module decomposition 

V ( A ) =  Vo(d2)0 V o ( A - a l ) O  V o ( . 2 - ( ~ 2 ) 0  V , ( , 1 - 2 ~ 1 )  

whilst if V ( h )  is atypical we have a decomposition 

V(.1) = V0(21)@ VI)('A-- a )  

where (Y is the unique odd positive root such that ( A  + p, a )  # 0. (Note that, for g1(2( l ) ,  
only singly atypical representations can occur.) It should be remarked that, in the 
above decompositions, it is implicitly assumed that all modules corresponding to 
non-dominant highest weights are trivially zero. 

The methods outlined above are extendable, in principle, to all irreducible rep- 
resentations of gl(m I n), as will be demonstrated for the case n = 1 in a forthcoming 
publication. 
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4. Conclusion 

We have explicitly constructed all finite-dimensional irreducible typical and atypical 
modules for type-I basic classical Lie superalgebras. In the typical case our results 
are simply an  elaboration of those obtained previously by Kac (1978), but with greater 
emphasis on the role of lemma 1. This result in fact appears implicitly in Kac (1978, 
proposition (2.9)), but its use for the construction of atypical modules is not noted or 
exploited. However, the construction of atypical modules, via theorem 2 ,  is potentially 
very useful, as illustrated in 8 3, and in particular may be applied to the direct 
construction of representation matrices, at least for low-lying atypical irreducible 
representations, obtained previously by other methods (Thierry-Mieg 1983). Moreover 
this construction is useful for the determination of branching rules (and hence character 
formulae) for atypical modules. This method will be illustrated in a forthcoming 
publication where the gl( n I l)Jgl(  n )  branching rules will be given for all typical and  
atypical irreducible representations of gl( n 1 1). 
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Appendix 

From the definition of the q? we clearly have 

[E,,,  T + ] = ~ * ~ O C L  (A1 1 

for suitable operators CJ, in the enveloping algebra of Lo = g1( m ) O g l (  n ) .  Applying 
Ek- to the left of this equation we obtain, using (17), 

T + @ C ~ = & , ~ * f . @ C ~  

Y,J  

$ 3 ,  

= 9 T-1 

= [ 

= ( a , ,  E,, + a,&k,  ) T+ 

= T+ @ ( n S k t a , ,  + Ekta,, - ma,&, + ak,Ep,) 

3 E k ~ l  T+ - [ 9 E k r  T+ 1 

or 

ck = 6,-(E f n)kt + 8 k , ( E  - -r? l ) ,7 .  

Substituting into ( A l )  we obtain 

[E, ,  , T,] =*;(E - m),, +q:( E + n)+”.  
In a similar way, using (19), we obtain 

[ ~ + , , q ~ ] = * ~ ( ~ - m ) ~ ~ + * ~ ( ~ + n ) , ~ + q ~  
which is (20) as required. A generalisation of these relations, for higher tank tensors 
of gl(n I l ) ,  will be given in a forthcoming publication. 
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